
coreIPM-LINUX for OMAP Release Notes

1. INTRODUCTION

coreIPM-LINUX is a fully fledged Linux distribution for OMAP 35xx architecture
with built in support for coreIPM management architecture.

The distribution has support for the following features:

SNMP
We use SNMP to notify management applications of system events. The
coreSNMP module uses the “snmptrap” command to send SNMP traps. The
Platform Event Trap format is used for sending a platform event in an SNMP
Trap. The specification of the Platform Event Trap format is defined in “IPMI -
Platform Event Trap Format Specification v1.0 Document Revision 1.0 December
7, 1998”
The coreIPM SNMP interface is built on the Net-SNMP package. There are two
MIB files related to coreIPM in /usr/local/share/smnp/mibs directory:
COREIPM-GROUP-SMI.txt defines our group enterprise number and our product
identification OIDs. COREIPM-MIB.txt holds the coreIPM MIB.

These files should also be on the system that will be running the management
applications or interpreting traps and informs.
There are also 2 C files coresnmp.h and coresnmp.c which are used for SNMP
agent extension. This enables the SNMP agent to support our MIB. When
queried for the objects we have defined in the MIB files, the agent extensions
respond with the current values.

The agent snmpd is located in /opt/snmp/sbin directory and started on system
startup.

Command Line Interface (CLI)
The command line interface gives you an easy way to configure and manage
your shelf. CLI also allows you to script commands.

CLI command summary:

- fru [ipmc [fru]]
- deactivate ipmc fru
- activate ipmc fru
- frudata ipmc fru offset data1 [data2...data22]
- frudata [ipmc [fru]]
- help
- sendmod fruid netfn cmd data1 [data2...data17]
- sendcmd addr netfn cmd data1 [data2...data25]
- upgrade

- date [YYYY MM DD hh mm [ss]| hh mm [ss]]
- version
- ipmc [ipmc]
- sensordata [ipmc [[lun:]number]]
- sensor [ipmc [[lun:]number]]
- cooling policy [on|off]
- shelf fs
- shelf fans_state
- shelf cs
- shelf cooling_state
- fans [fru]
- alarm [minor|major|critical|clear]
- sel clear [ipmc]
- sel info [ipmc]
- sel [-v] [ipmc [record_count [starting_record]]]

RMCP
Enables network interface for sending and receiving IPMI commands. We
support:

Multi-session access
User Privilege Levels
Cipher Suites
+ Authentication Algorithms

- HMAC-SHA1
- HMAC-MD5

+ Integrity Algorithms
- HMAC-SHA1-96
- HMAC-MD5-128
- MD5-128

+ Confidentiality Algorithms
- AES-CBC-128

OpenHPI server & plug-in
HPI provides a standard and hardware independent service to upper level
management software to set and retrieve configuration or operational data about
the hardware components, and to control the operation of those components.

HPI is defined as a library API of C-library functions . OpenHPI provides an open
source implementation of the Service Availability Forum (SAF) Hardware
Platform Interface (HPI). Open HPI includes a Plug-in Application Binary
Interface (ABI): an internal interface designed for developers to easily write
modules for a specific platform with ease.

We have our own plug-in implementation called coreHPI that provides the
interface to the coreIPM architecture.

2. HARDWARE

OMAP3500 processors deliver laptop-like performance at handheld power levels
with over 1,200 Dhrystone MIPS using the superscalar ARM Cortex-A8 with
highly accurate branch prediction and 256KB L2 cache running at up to 600MHz.

To connect to a 10/100 Ethernet network we support the USB200M from Linksys
which attaches directly to a USB port.

We currently support the following development boards for our OMAP release,
both are currently sold at around $150:

Beagle Board
Beagle Board is an ultra-low cost, high performance, low power OMAP3530
based platform designed by BeagleBoard.org community members and sold by
Digi-Key. (http://beagleboard.org/hardware)

gumstix Overo™
OMAP 3503 Application Processor with ARM Cortex-A8 CPU at 600 MHz with
256MB RAM & 256MB Flash.
(http://www.gumstix.com/store/catalog/product_info.php?products_id=211)

http://focus.ti.com/general/docs/gencontent.tsp?contentId=36915
http://beagleboard.org/hardware
http://www.gumstix.com/store/catalog/product_info.php?products_id=211

3. SOFTWARE COMPILATION OPTIONS AND
PROCEDURES
Boot Stages
Stage 1: Processor ROM Code
During power-on, or after a RESET operation, the OMAP processor runs its
internal ROM code. This ROM code cannot be modified by the system designer.
After a power-on-reset is initiated, the ROM code reads the SYS.BOOT register
to determine the memory interface configuration and programs the general-
purpose memory controller (GPMC) accordingly. Then the ROM code determines
how the flash device is configured and whether this device is supported by the
ROM code.

After the flash device configuration has been verified, the process of copying the
x-loader from the flash device to the internal SRAM of the OMAP processor
begins.

First, the ROM code reads bytes 1 through 4 of the x-loader to determine the size
of the file; then it reads bytes 5 through 8 of the x-loader, which contain the
destination address in SRAM where the x-loader will be shadowed. The ROM
code then shadows the x-loader from the flash device to the OMAP processor
SRAM, and finally, the system jumps to the SRAM address where the first byte of
the x-loader is stored.

Stage 2: Bootstrap
x-loader is the stage 2 bootstrap code. The x-loader code is stored in the flash,
and the ROM code copies it to the OMAP processor SRAM for execution. x-
loader in turn bootstraps U-Boot.

Stage 3: Boot Loader
Stage 3 is the boot loader, which is used to copy the operating system code from
the flash to the DRAM; in this case U-Boot is the boot loader code. The U-Boot
code is stored in flash, and the stage 2 code copies it to the DRAM for execution.

Stage 4: Operating System
The Linux kernel, is stored in the flash, and the stage 3 code copies it to the
DRAM, where it is executed. The boot process is complete after this stage as the
OS takes control of the system.

3.1 Compiling x-loader

Compiling x-loader for NAND booting
• In file include/configs/omap3530beagle.h disable the "CFG_CMD_MMC"

macro
/* For X-loader to be flashed on to NAND disable the below
macro */
//#define CFG_CMD_MMC 1

• Compile the x-loader
make CROSS_COMPILE=arm-none-linux-gnueabi- distclean
make CROSS_COMPILE=arm-none-linux-gnueabi-
omap3530beagle_config
make CROSS_COMPILE=arm-none-linux-gnueabi-

File named "x-load.bin" will be generated

• Convert x-load.bin to x-load.bin.ift (required to FLASH x-loader to NAND)

using the "SignGP" tool. signGP reads the x-load.bin file and writes out the x-
load.bin.ift file. The signed image is the original pre-pended with the size of
the image and the load address. If not entered on command line, file name is
assumed to be x-load.bin in current directory and load address is
0x40200800.

./signGP x-load.bin

• Copy x-load.bin.ift to NAND or download it through UART.

Compiling x-loader for MMC booting
• In file include/configs/omap3530beagle.h enable the "CFG_CMD_MMC"

macro
/* For X-loader to be flashed on to NAND disable the below
macro */
#define CFG_CMD_MMC 1

• Compile the x-loader
make CROSS_COMPILE=arm-none-linux-gnueabi- distclean
make CROSS_COMPILE=arm-none-linux-gnueabi-
omap3530beagle_config
make CROSS_COMPILE=arm-none-linux-gnueabi-

File named "x-load.bin" will be generated

• Convert x-load.bin to x-load.bin.ift (required to FLASH x-loader to NAND)

using the "SignGP" tool. signGP reads the x-load.bin file and writes out the x-
load.bin.ift file. The signed image is the original pre-pended with the size of
the image and the load address. If not entered on command line, file name is
assumed to be x-load.bin in current directory and load address is
0x40200800.

./signGP x-load.bin

• Rename x-load.bin.ift to MLO (required for MMC booting)

• Copy MLO to MMC/SD card using a card reader/writer.

3.2 Compiling u-boot

Compiling u-boot for Flashing NAND automatically

• In file include/configs/omap3530beagle.h enable the

CONFIG_BOOTCOMMAND macro and comment the
CONFIG_BOOTCOMMAND below it

#define CONFIG_BOOTCOMMAND \
 "mmcinit;fatload mmc 0 0x80200000 x-load.bin.ift;\
 nand unlock;nand ecc hw;nand erase 0 80000;nand write.i
0x80200000 0 80000;\
 fatload mmc 0 0x80200000 flash-uboot.bin; nand unlock;\
 nand ecc sw;nand erase 80000 160000; nand write.i
0x80200000 80000 160000;\0"

 Comment the below line as shown below

/* #define CONFIG_BOOTCOMMAND "\0" */

• Build u-boot

make CROSS_COMPILE=arm-none-linux-gnueabi- distclean

make CROSS_COMPILE=arm-none-linux-gnueabi-
omap3530beagle_config
make CROSS_COMPILE=arm-none-linux-gnueabi-

File named "u-boot.bin" will be generated

Compiling u-boot for regular Kernel Booting

• In file include/configs/omap3530beagle.h disable the

CONFIG_BOOTCOMMAND macro and uncomment the
CONFIG_BOOTCOMMAND macro below it

/*
#define CONFIG_BOOTCOMMAND \
 "mmcinit;fatload mmc 0 0x80200000 x-load.bin.ift;\
 nand unlock;nand ecc hw;nand erase 0 80000;nand write.i
0x80200000 0 80000;\
 fatload mmc 0 0x80200000 flash-uboot.bin; nand unlock;\
 nand ecc sw;nand erase 80000 160000; nand write.i
0x80200000 80000 160000;\0"
*/

Uncomment CONFIG_BOOTCOMMAND macro below

#define CONFIG_BOOTCOMMAND "\0"

• Compile u-boot

make CROSS_COMPILE=arm-none-linux-gnueabi- distclean
make CROSS_COMPILE=arm-none-linux-gnueabi-
omap3530beagle_config
make CROSS_COMPILE=arm-none-linux-gnueabi-

File "u-boot.bin" will be generated.

3.3 Compiling Kernel

• Compile the Kernel

make CROSS_COMPILE=arm-none-linux-gnueabi- distclean
make CROSS_COMPILE=arm-none-linux-gnueabi-
omap3_beagle_defconfig
make CROSS_COMPILE=arm-none-linux-gnueabi- uImage

File named "uImage" will be generated in arch/arm/boot directory

3.4 Compiling MTDUtils

Source and dependencies

MTD utils are available from MTD utils git. You can get them by
• using gitweb "snapshot" feature (use "snapshot" link at latest commit at the

right side)
• using git

git pull git://git.infradead.org/mtd-utils.git mtd-utils

Compiling MTD utils depend on zlib and LZO. Download latest archives using the
given links. For this example we use

• zlib-1.2.3.tar.bz2
• lzo-2.03.tar.gz
• mtd-utils.git-snapshot-20081004.tar.gz

Cross compiling

In this example, we use

/home/user/mtd

as base directory. This example assumes you are in this directory and the above
three source .tar.gz files are located here, too.

To not pollute the host file system, we install build results in local subdirectory:

> mkdir install

should result in /home/user/mtd/install (replace this with your real path below)

zlib
> tar xfj zlib-1.2.3.tar.bz2
> cd zlib-1.2.3/
zlib-1.2.3 > ./configure --prefix=/home/user/mtd/install

Edit resulting Makefile, e.g.

zlib-1.2.3 > emacs Makefile

and add toolchain prefix arm-none-linux-gnueabi- to gcc, ar and ranlib. Then you
should be ready to compile:

zlib-1.2.3 > make

http://git.infradead.org/mtd-utils.git
http://git.or.cz/
http://www.zlib.net/
http://www.oberhumer.com/opensource/lzo/download/

zlib-1.2.3 > make install
zlib-1.2.3 > cd ..

Result should be zlib.a in install/lib directory and zlib's headers in install/include.
If this was successful, remove build directory:

> rm -rf zlib-1.2.3

lzo
> tar xfz lzo-2.03.tar.gz
> cd lzo-2.03/
lzo-2.03 > ./configure --host=arm-none-linux-gnueabi --
prefix=/home/user/mtd/install
lzo-2.03 > make
lzo-2.03 > make install
lzo-2.03 > cd ..
> rm -rf lzo-2.03

Result should be liblzo2.a in install/lib directory and lzo's headers in
install/include/lzo.

mtd-utils
> tar xfz mtd-utils.git-snapshot-20081004.tar.gz
> cd mtd-uitls/

MTD-Utils don't have a configure script, so we have to edit Makefile again.
Depending on the version of MTD Utils, make sure head of top level Makefile
has:

mtd-uitls > emacs Makefile
PREFIX=/home/user/mtd/install
...
ZLIBCPPFLAGS=-I$(PREFIX)/include
LZOCPPFLAGS=-I$(PREFIX)/include/lzo

ZLIBLDFLAGS=-L$(PREFIX)/lib
LZOLDFLAGS=-L$(PREFIX)/lib

CROSS=arm-none-linux-gnueabi-
...
CFLAGS ?= -O2 -g $(ZLIBCPPFLAGS) $(LZOCPPFLAGS)
...

Then, you should be able to cross compile MTD Utils setting variable
WITHOUT_XATTR:

mtd-uitls > WITHOUT_XATTR=1 make
mtd-uitls > make install
mtd-uitls > cd ..
> rm -rf mtd-utils
> cd install/sbin/
install/sbin > arm-none-linux-gnueabi-strip *

Directory install/sbin/ should now contain cross compiled MTD utils you can use
at your target.

3.4 Source & Pre-built images
Source Archive md5sum

x-loader

u-boot 1.3.3

Pre-Built Image Description md5sum

x-load.bin.ift_for_NAND x-loader image used to flash on
NAND for NAND booting

MLO
x-loader image to be copied to
MMC/SD cards for booting Beagle
wit MMC/SD

6ae111d0b3bad7673697187a8e3ee4b6

u-boot.bin u-boot Image 33ee8852dfdb091b74c7ddc2d9ad2445

u-boot.bin
u-boot Image that automatically
flashes u-boot Image to NAND
from MMC

Kernel (uImage)
2.6.22.18

Linux Kernel Image with USB
OTG mode enabled

BusyBox (ramdisk) File
System 8MB Ramdisk File System Image

BusyBox FS with ALSA
libraries

File system Image with ALSA
libraries

Note: To use MLO, U-Boot and kernel images from above, rename downloaded files to MLO, u-
boot.bin and uImage at your SD card. I.e. remove the extensions to distinguish the download
files.

http://coreipm.googlecode.com/files/x-load_revb.tar.gz
http://coreipm.googlecode.com/files/u-boot_revb.tar.gz
http://coreipm.googlecode.com/files/x-load.bin.ift_for_NAND
http://coreipm.googlecode.com/files/MLO_revb
http://coreipm.googlecode.com/files/flash-uboot.bin
http://coreipm.googlecode.com/files/u-boot.bin_autoflash
http://coreipm.googlecode.com/files/uImage_OTG
http://coreipm.googlecode.com/files/uImage_OTG
http://coreipm.googlecode.com/files/rd-ext2-8M.bin
http://coreipm.googlecode.com/files/rd-ext2-8M.bin
http://coreipm.googlecode.com/files/ALSA-FS.tar.gz
http://coreipm.googlecode.com/files/ALSA-FS.tar.gz

Tools for OMAP3
Tool Path Description

ARM Linux GCC codesourcery tool chain (Select GNU/Linux and download version
2007q3)

signGP x-loader Signing Tool Source is here

HP MMC/SD Disk
Format Tool

HP USB Disk Storage Format Tool 2.0.6 for Windows. See
LinuxBootDiskFormat for using Linux fdisk instead

3.5 Booting your development system

Currently, booting with MMC/SD is the only working way for first board bring up.

MMC/SD formatting
As described in above MMC/SD boot description, you have to create a bootable
partition on MMC/SD Card. See Appendix C - MMC Boot Format on how this can
be done with Linux tools.

Dual partition card
You can create a dual-partition card, booting from a FAT partition that can be
read by the OMAP3 ROM bootloader and Windows, then utilizing an ext2
partition for the Linux root file system.

To mount second ext2 partition as root file system (e.g. containing contents of rd-
ext2.bin) use kernel boot arguments (e.g. in uboot using setenv bootargs):

console=ttyS2,115200n8 root=/dev/mmcblk0p2 rw rootwait

U-Boot booting
If your MMC/SD card formatting is correct and you put MLO, u-boot.bin and
uImage on the card you should get a u-boot prompt after booting beagle board.
E.g. (output from terminal program with 115200 8N1):

...40T.........XH.H.U�..Instruments X-Loader 1.41
Starting on with MMC
Reading boot sector

717948 Bytes Read from MMC
Starting OS Bootloader from MMC...

U-Boot 1.1.4 (Apr 2 2008 - 13:42:13)

OMAP3430-GP rev 2, CPU-OPP2 L3-133MHz
TI 3430Beagle 2.0 Version + mDDR (Boot ONND)

http://www.codesourcery.com/gnu_toolchains/arm/portal/release313
http://coreipm.googlecode.com/files/signGP
http://beagleboard.googlecode.com/files/signGP.c
http://selfdestruct.net/misc/usbboot/SP27213.exe
http://selfdestruct.net/misc/usbboot/SP27213.exe
http://code.google.com/p/beagleboard/wiki/LinuxBootDiskFormat

DRAM: 128 MB
Flash: 0 kB
NAND:256 MiB
In: serial
Out: serial
Err: serial
Audio Tone on Speakers ... complete

Using this u-boot prompt, you now can start kernel uImage stored on MMC card
manually:

mmcinit
fatload mmc 0:1 0x80000000 uimage
bootm

If you like to make that happen every boot:

set bootcmd 'mmcinit ; fatload mmc 0:1 0x80000000 uimage ;
bootm' ; saveenv

The following software parts can be stored and booted/run from NAND:

• X-Loader
• U-Boot (+ environment/configuration data)
• Linux kernel
• Linux file system

The memory partitioning:

0x00000000-0x00080000 : "X-Loader"
0x00080000-0x00260000 : "U-Boot"
0x00260000-0x00280000 : "U-Boot Env"
0x00280000-0x00680000 : "Kernel"
0x00680000-0x10000000 : "File System"

To be able to write something to (empty) NAND, you first need to boot from an
other source, e.g. MMC/SD card boot. Besides the files you need for MMC/SD
card boot (MLO & U-Boot), put the files you want to flash into first FAT partition of
MMC/SD card, too. Then you can read them from there and write them to NAND.
Note: If something goes wrong writing the initial X-Loader, your board might not
boot any more without pressing the user button. See Appendix D- Board
recovery on how to fix this.

X-Loader

Build or download binary (x-load.bin.ift_for_NAND) X-Loader. Put it at first (boot)
FAT partition of MMC/SD card and boot from card. Then start boot from card and
use the following to write X-Loader to NAND:

...40T.......

Texas Instruments X-Loader 1.41
Starting on with MMC
Reading boot sector

147424 Bytes Read from MMC
Starting OS Bootloader from MMC...

U-Boot 1.3.3-00411-g76fe13c-dirty (Jul 12 2008 - 17:12:05)

OMAP3530-GP rev 2, CPU-OPP2 L3-165MHz
OMAP3 Beagle Board + LPDDR/NAND
DRAM: 128 MB
NAND: 256 MiB
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0

mmcinit
fatload mmc 0:1 80000000 x-load.bin.ift_for_NAND
reading x-load.bin.ift_for_NAND

9808 bytes read
nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
nand ecc hw
nand erase 0 80000

NAND erase: device 0 offset 0x0, size 0x80000
Erasing at 0x60000 -- 100% complete.
OK
nand write 80000000 0 80000

NAND write: device 0 offset 0x0, size 0x80000
524288 bytes written: OK

Note: The command nand ecc hw is essential here! X-Loader is started by
OMAP3 boot rom. This uses HW ECC while reading the NAND, so while writing,

we have to use OMAP3 HW ECC, too. If you don't use HW ECC boot ROM, you
can't boot from NAND any more. See Appendix D - Board recovery.

U-Boot

Build or download binary (flash-uboot.bin) U-Boot. Put it at first (boot) FAT
partition of MMC/SD card and boot from card. Then start boot from card and use
the following to write U-Boot to NAND:

mmcinit
fatload mmc 0:1 80000000 u-boot.bin
reading u-boot.bin

147424 bytes read
nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
nand ecc sw
nand erase 80000 160000

NAND erase: device 0 offset 0x80000, size 0x160000
Erasing at 0x1c0000 -- 100% complete.
OK
nand write 80000000 80000 160000

NAND write: device 0 offset 0x80000, size 0x160000
 1441792 bytes written: OK

Note: You can use the same u-boot.bin you use to boot from MMC/SD card for
NAND. There are no differences between U-Boot used for MMC/SD card boot
and NAND boot.

Note: Here, you don't need the nand ecc hw option. X-Loader which loads &
starts U-Boot is able to understand SW ECC written by U-Boot.

Kernel

While X-Loader and U-Boot can be written only by U-Boot, for kernel and file
system there are two ways to write them to NAND: Either by U-Boot (similar way
as for X-Loader and U-Boot above) or from running kernel (e.g. booted from
MMC card).

Note: X-Loader and U-Boot can't be written from already running kernel, too,
because from kernel point of view X-loader and U-Boot NAND partitions are

marked as write only. See omap3beagle_nand_partitions[] configuration structure
in kernel's arch/arm/mach-omap2 directory.

Writing kernel with U-Boot

mmcinit
fatload mmc 0:1 80000000 uImage
reading uImage

nand ecc sw
nand erase 280000 400000

NAND erase: device 0 offset 0x280000, size 0x400000
Erasing at 0x660000 -- 100% complete.
OK
nand write 80000000 280000 400000

NAND write: device 0 offset 0x280000, size 0x400000
 4194304 bytes written: OK

Once you do this, use U-Boot commands to boot kernel (uImage) from NAND:

nand read 80000000 280000 400000 ; bootm 80000000

These, you can store as bootcmd and your board will automagically boot uImage
from NAND.

Writing kernel with kernel

Once you have a kernel booted, e.g. from MMC card, you can use it to write
himself (uImage) to NAND and then switch from MMC boot to kernel NAND boot.
For this, observe kernel's boot messages. These should have something like
...
omap2-nand driver initializing
NAND device: Manufacturer ID: 0x2c, Chip ID: 0xba (Micron
NAND 256MiB 1,8V 16-bit)
cmdlinepart partition parsing not available
Creating 5 MTD partitions on "omap2-nand":
0x00000000-0x00080000 : "X-Loader"
0x00080000-0x00260000 : "U-Boot"
0x00260000-0x00280000 : "U-Boot Env"
0x00280000-0x00680000 : "Kernel"
0x00680000-0x10000000 : "File System"
...

At kernel's prompt command cat /proc/mtd will give you similar output:

cat /proc/mtd
dev: size erasesize name
mtd0: 00080000 00020000 "X-Loader"
mtd1: 001e0000 00020000 "U-Boot"
mtd2: 00020000 00020000 "U-Boot Env"
mtd3: 00400000 00020000 "Kernel"
mtd4: 0f980000 00020000 "File System"

While the first three partitions (X-Loader, U-Boot and U-Boot Env) are read only
from kernel point of view, Kernel and File System partition can be written by
kernel itself. To do this, you need MTD User modules in your kernel's root file
system.

In this example we mount boot (FAT) partition of MMC card (using a dual boot
card) to read kernel image (uImage) from. If you have network connection in your
kernel, you can use this, too. Or you put uImage in your root file system. Goal is
to have access to uImage from running kernel to be able to write it to NAND.

mkdir -p /mnt/fat
mount /dev/mmcblk0p1 /mnt/fat/
ls -la /mnt/fat
-rwxr-xr-x 1 root root 16740 Oct 7 17:28 mlo
-rwxr-xr-x 1 root root 717116 Oct 24 2008 u-
boot.bin
-rwxr-xr-x 1 root root 2106940 Oct 26 2008
uImage
cp /mnt/fat/uImage .
ls -la
-rwxr-xr-x 1 root root 2106940 Oct 22 00:30
uImage
flash_eraseall /dev/mtd3
Erasing 128 Kibyte @ 3e0000 -- 96 % complete.
nandwrite /dev/mtd3 uImage
Input file is not page aligned
Data did not fit into device, due to bad blocks
: Success

File system

As with kernel, while X-Loader and U-Boot can be written only by U-Boot, for file
system there are two ways to write them to NAND: Either by U-Boot (similar way
as for X-Loader and U-Boot above) or from running kernel (e.g. booted from
MMC card). A lot of users report they have issues with writing (root) file system
with U-Boot. Main issue is that U-Boot has to write file system exactly in format

http://www.linux-mtd.infradead.org/doc/general.html

kernel expects. If there are minor incompatibilities, kernel will later not be able to
read file system written by U-Boot.

So, while we document here how to write file system with U-Boot,
recommended way is to write (root) file system by kernel itself. With this, it is
ensured that kernel writes a file system it will later be able to read.

Writing file system with U-Boot
This way is not recommended. See above.

mmcinit
fatload mmc 0:1 80000000 rootfs.jffs2
reading rootfs.jffs2

12976128 bytes read
nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
nand ecc sw
nand erase 680000 F980000

NAND erase: device 0 offset 0x680000, size 0xf980000
Erasing at 0xffe0000 -- 100% complete.
OK
nand write.jffs2 80000000 680000 ${file_size}

NAND write: device 0 offset 0x680000, size 0xc60000

Writing data at 0x12df800 -- 100% complete.
 12976128 bytes written: OK

Writing file system with kernel

This is the recommended way. See above.

First, we boot kernel with (root) file system on SD card, write (root) file system
using file system image at SD card to Beagle's NAND with running kernel. After
this is done, we switch kernel's boot arguments to take root file system from
NAND instead of SD card, then.
To be able to manipulate/erase/write NAND from kernel's user space, we need
MTD Utils (e.g. flash_eraseall).

If you don't have them already, you can get them

• using the angstrom demo, you can install via opkg install mtd-utils

http://www.linux-mtd.infradead.org/

• cross compiling them your self. See Section 3.4

For file system in Beagle's NAND, we use JFFS2. As JFFS2 is part of the
standard git kernel, only thing is to configure kernel to be able to use JFFS2 is to
enable in make menuconfig (check if already enabled):

CONFIG_JFFS2_FS=y
CONFIG_JFFS2_FS_DEBUG=0
CONFIG_JFFS2_FS_WRITEBUFFER=y
CONFIG_JFFS2_ZLIB=y
CONFIG_JFFS2_RTIME=y

Having kernel supporting JFFS2 and MTD Utils, we now first erase file system
partition and create JFFS2 into it:

cat /proc/mtd
dev: size erasesize name
mtd0: 00080000 00020000 "X-Loader"
mtd1: 001e0000 00020000 "U-Boot"
mtd2: 00020000 00020000 "U-Boot Env"
mtd3: 00400000 00020000 "Kernel"
mtd4: 0f980000 00020000 "File System"
flash_eraseall -j /dev/mtd4
Erasing 128 Kibyte @ f960000 -- 99 % complete. Cleanmarker
written at f960000.

Then, we can mount "File system" partition:

cd /mnt
mkdirt nand
mount -t jffs2 /dev/mtdblock4 /mnt/nand

and extract the root file system image to it:

cd nand
tar xfz
<where_ever_your_root_fs_image_is_at_sd_card>/rootfs.tar.gz
.
... wait ...

cd ..
sync
umount nand

Now, you should reboot your board and edit bootargs in U-Boot to configure root
fs in NAND:

http://sourceware.org/jffs2/

... root=/dev/mtdblock4 rootfstype=jffs2 ...

Do the Hardware Setup for booting u-boot over NAND Flash.
NOTE: If u-boot is not Flashed on the NAND, then refer to NAND Flash Procedure to do
the same

Booting the Linux Image

Once you have u-boot booted over NAND or MMC, a Linux kernel image can be
booted on. The Linux Kernel Image (uImage) can be downloaded to DDR
memory using UART (time consuming), MMC, NAND (if it was stored in it), USB
(Not supported yet).

The Below procedure gives MMC based Linux Kernel Booting.
Compile the Linux Kernel Image "uImage".
Copy the uImage file in MMC/SD card pre-formated for FAT32.
Download the uImage:

mmcinit
fatload mmc 0 0x80300000 uImage

Set/Configure the boot arguments
The filesystem to be mounted could be present in MMC, RAM (Ramdisk), NAND
(if copied), Ethernet (using Ethernet over USB Dongle on USB HOST machine).
The Bootargs for each of these is shown below:

Bootargs for RAMDISK File System

setenv bootargs console=ttyS2,115200n8 ramdisk_size=8192
root=/dev/ram0 rw rootfstype=ext2 initrd=0x81600000,8M
nohz=off

Bootargs for MMC File System

setenv bootargs console=ttyS2,115200n8 noinitrd
root=/dev/mmcblk0p1 rootfstype=ext2 rw rootdelay=1 nohz=off

Getting File System on Beagle Board

RAMDISK File system

fatload mmc 0 0x81600000 rd-ext2.bin

NOTE: rd-ext2.bin should have been copied onto MMC Card.

MMC File system

• Copy Filesystem on MMC/SD card.
• Format an MMC/SD card for ext2/ext3 file system using Linux Machine
• Mount the MMC/SD card on Host Linux Machine
• UnTar the Pre-built Filesystem
• Un-Mount the MMC/SD card on Host Linux Machine
• Remove the MMC/SD card that had uImage, and insert the MMC/SD card

that has Filesystem.

Booting the Kernel Image

bootm 0x80300000

Appendix A – Beagleboard

Expansion Connector Signals
Pin Option A Option B Option C Option D
1 VIO_1V8 VIO_1V8 VIO_1V8 VIO_1V8
2 DC_5V DC_5V DC_5V DC_5V
3 MMC2_DAT7 GPIO_139
4 McBSP3_DX GPIO_140 UART2_CTS
5 MMC2_DAT6 GPIO_138
6 McBSP3_CLKX GPIO_141 UART2_RTS
7 MMC2_DAT5 GPIO_137
8 McBSP3_FSX GPIO_143 UART2_RX
9 MMC2_DAT4 GPIO_136
10 McBSP3_DR GPIO_142 UART2_TX
11 MMC2_DAT3 McSPI3_CS0 GPIO_135
12 McBSP1_DX McSPI4_SIMO McBSP3_DX GPIO_158
13 MMC2_DAT2 McSPI3_CS1 GPIO_134
14 McBSP1_CLKX McBSP3_CLKX GPIO_162
15 MMC2_DAT1 GPIO_133
16 McBSP1_FSX McSPI4_CS0 McBSP3_FSX GPIO_161
17 MMC2_DAT0 McSPI3_SOMI GPIO_132
18 McBSP1_DR McSPI4_SOMI McBSP3_DR GPIO_159
19 MMC2_CMD McSPI3_SIMO GPIO_131
20 McBSP1_CLKR McSPI4_CLK SIM_CD GPIO_156
21 MMC2_CLKO McSPI3_CLK GPIO_130
22 McBSP1_FSR GPIO_157
23 I2C2_SDA GPIO_183
24 I2C2_SCL GPIO_168
25 REGEN REGEN REGEN REGEN
26 nRESET nRESET nRESET nRESET
27 GND GND GND GND
28 GND GND GND GND

We utilize the signals indicated in bold.

JTAG connection

Note: JTAG on BeagleBoard uses 1.8V.

We use the BDI2000 with the omap35xx.cfg and regOMAP3500.def files that
come with the BDI hardware.

Your BDI2000 needs firmware that supports Cortex-A8.

bdiGDB enhances the GNU debugger (GDB), with Background Debug Mode
(BDM) and JTAG debugging via BDI2000

You can contact Ultimate Solutions, Inc. (www.ultsol.com) for BDI200 and
firmware updates, they also carry a cable that supports the beagle board.

Texas Instruments uses (e.g. on BeagleBoard) a variation on the standard ARM
2x7 JTAG header:

ARM PIN TI

Vcc 1 TMS

GND 2 nTRST

nTRST 3 TDI

GND 4 GND

TDI 5 Vcc

GND 6 NC

TMS 7 TDO

GND 8 GND

TCK 9 RTCK

GND 10 GND

TDO 11 TCK

http://www.abatron.ch/products/bdi-family/bdi1000-bdi2000.html
http://www.ultsol.com/
http://elinux.org/BeagleBoard
http://elinux.org/JTAG

nRST 12 GND

Vcc 13 EMU-0

GND 14 EMU-1

User button

With the user button on BeagleBoard you can configure boot order. Depending
on this button, the order used to scan boot devices is changed. The boot order is
(the first is the default boot source):

• User button not pressed: NAND -> USB -> UART -> MMC
• User button is pressed: USB -> UART -> MMC -> NAND

Technically speaking, the user button configures pin SYS.BOOT[5].

Appendix B – Overo

Expansion Connectors

The bottom side of Overo has two (2) x 70-pin AVX 5602-14 connectors with
0.4mm pitch:
- connector J1 - features the LCD, PWM and analog signals.
- connector J4 - features the Extended Memory Bus and MMC signals.

Connector J1

Signal Pin Pin Signal
N_MANUAL_RESET 1 70 GND

 GPIO71_L_DD01 2 69 HSORF
 GPIO70_L_DD00 3 68 HSOLF
 GPIO73_L_DD03 4 67 USYSTEM
 GPIO75_L_DD05 5 66 USYSTEM
 GPIO72_L_DD02 6 65 POWERON
 GPIO74_L_DD04 7 64 ADCIN2
 GPIO127_TS_IRQ 8 63
GPIO0_WAKEUP 9 62

 GPIO185_I2C3_SDA 10 61 GPIO93_L_DD23
 GPIO80_L_DD10 11 60 GPIO82_L_DD12
 GPIO81_L_DD11 12 59 SYSEN

 GPIO184_L_I2C3_SCL 13 58 ADCIN2
 GPIO128_GPS_PPS 14 57 MIC_MAIN_MF

 GPIO92_L_DD22 15 56 GND
 GPIO147_GPT8__PWM 16 55 GPIO145_GPT10_PWM

 GPIO83_L_DD13 17 54 USBOTG_VBUS
 GPIO144_GPT9_PWM 18 53 ADCIN6

 GPIO84_L_DD14 19 52 VBACKUP
 GPIO85_L_DD15 20 51 ADCIN5

 GPIO146_GPT11_PWM 21 50 AGND
 GPIO163_IR_CTS3 22 49 PWM1
 GPIO91_L_DD21 23 48 ADCIN3
 GPIO87_L_DD17 24 47 GPIO170_HDQ_1WIRE
 GPIO88_L_DD18 25 46 USBOTG_ID

 GPIO166_IR_TXD3 26 45 GPIO90_L_DD20
 GPIO89_L_DD19 27 44 GPIO86_L_DD16
 GPIO79_L_DD09 28 43 GPIO69_L_BIAS
 GPIO77_L_DD07 29 42 PWM0
 GPIO78_L_DD08 30 41 AUXRF

 GPIO165_IR_RXD3 31 40 ADCIN4
 GPIO66_L_PCLK 32 39 MIC_SUB_MF
 GPIO76_L_DD06 33 38 AUXLF
 GPIO68_L_FCLK 34 37 USBOTG_DM
 GPIO67_L_LCLK 35 36 USBOTG_DP

Connector J4

Signal Pin Pin Signal
 VSYSTEM 1 70 EM_CLK
 VSYSTEM 2 69 EM_NBF1

GND 3 68 EM_WAIT0
 EM_NCS5_ETH0 4 67 EM_NCS6

 EM_NCS4 5 66 EM_NCS0
 EM_NWF 6 65 EM_NBF0

 EM_NADV_ALE 7 64 EM_NCS1
 EM_NOE 8 63 EM_NWP

 GPIO65_ETH1_TRQ1 9 62 EM_A9
 GPIO64_ETH0_NRESET 10 61 EM_A4

 EM_A2 11 60 EM_A10
 EM_A8 12 59 EM_A3
 EM_A5 13 58 EM_A1
 EM_A7 14 57 EM_A6
 EM_D2 15 56 EM_D0

 EM_D10 16 55 EM_D9
 EM_D3 17 54 EM_D8

 EM_D11 18 53 EM_D1
 EM_D4 19 52 EM_D13

 EM_D12 20 51 EM_D6
EM_D5 21 50 EM_D14

 EM_D15 22 49 EM_D7

 GPIO13_MMC3_CMD 23 48 GPIO151_RXD1
 GPIO148_TXD1 24 47 GPIO150_MMC3_WP

 GPIO176_ETH0_IRQ 25 46 GPIO49_MMC3_CD
 GPIO18_MMC3_D0 26 45 GPIO173_SPI1_MISO
 GPIO174_SPI1_CS0 27 44 GPIO172_SPI1_MOSI

 GPIO168_USBH_CPEN 28 43 GPIO171_SPI1_CLK
 GPIO14_MMC3_DAT4 29 42 GPIO175_SPI1_CS1
 GPIO21_MMC3_DAT4 30 41 GPIO114_SPI1_NIRQ

 GPIO17_MMC3_D 31 40 GPIO12_MMC3_CLK
 USBH_UBUS 32 39 GPIO20_MMC3_D2

 GND 33 38 GPIO23_MMC3_DAT5
 USBH_DP 34 37 GPIO22_MMC3_DAT6
 USBH_DM 35 36 GPIO19_MMC3_D1

Appendix C - MMC Boot Format

In order to create a bootable SD/MMC card under Linux compatible with OMAP3
boot ROM, you'd have to set a special geometry in the partition table, which is
done through the fdisk "Expert mode".

First, lets clear the partition table:

fdisk /dev/sdb

Command (m for help): o
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)
Print card info:
Command (m for help): p

Disk /dev/sdb: 128 MB, 128450560 bytes
....

Note card size in bytes. Needed later below.

Then go into "Expert mode":

Command (m for help): x

Now we want to set the geometry to 255 heads, 63 sectors and calculate the
number of cylinders required for the particular SD/MMC card:

Expert command (m for help): h
Number of heads (1-256, default 4): 255

Expert command (m for help): s
Number of sectors (1-63, default 62): 63
Warning: setting sector offset for DOS compatiblity

Expert command (m for help): c
Number of cylinders (1-1048576, default 1011): 15

In this case 128MB card is used (reported as 128450560 bytes by fdisk above),
thus 128450560 / 255 / 63 / 512 = 15.6 rounded down to 15 cylinders. Numbers
there are 255 heads, 63 sectors, 512 bytes per sector.

Now, return to main mode and create a new partition:

Expert command (m for help): r

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-15, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-15, default 15): 15

Mark it bootable:

Command (m for help): a
Partition number (1-4): 1

And change its type to FAT32:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): c
Changed system type of partition 1 to c (W95 FAT32 (LBA))

The result is:

Command (m for help): p

Disk /dev/sdb: 128 MB, 128450560 bytes
255 heads, 63 sectors/track, 15 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 * 1 15 120456 c W95 FAT32
(LBA)

Now, really write configuration to card (until here, card is not changed):

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.

What's left is to format our partition as FAT32 to be mounted and populated:

mkfs.vfat -F 32 /dev/sdb1
mkfs.vfat 2.11 (12 Mar 2005)

mount /dev/sdb1 /mnt/tmp
Note: If you use additional mkfs.vfat parameter -n you can give the card a name,
e.g. for easier identification (i.e. mkfs.vfat -n omap3 -F 32 /dev/sdb1)
The SD/MMC card is now ready to be used to boot OMAP3 boards.

sfdisk
In order to format same card using sfdisk, one needs to do the following:

sfdisk -H 255 -S 63 -C 15 /dev/sdb << EOF
> ,,b,*
> EOF

And follow with the mkfs.vfat commands above.

Appendix D - Board recovery

Normally, if you boot from MMC, you will get something like

...40T...

in terminal program connected to UART (115200 8N1). This is output from
OMAP3's bootrom while scanning the UART for boot source before trying to boot
from MMC card. If you don't get this, but want to boot from MMC, most probably
bootrom doesn't reach the MMC boot stage any more. If you played with NAND
before getting this, most probably NAND contains some broken content.

Depending on user button OMAP3 on BeagleBoard uses different boot order.
Normal order if user button isn't pressed at power up is boot from

NAND -> USB -> UART -> MMC

in this order. Depending on the boot medium (e.g. MMC) this might fail if
something bad is in NAND flash which confuses OMAP3 bootrom thus stopping it
to reach MMC boot stage.

This might happen if you e.g. mess your NAND, e.g. something went wrong with
NAND boot.

Recovery

First, we have to press user button at power up to switch boot order to

USB -> UART -> MMC -> NAND

to have option to boot from other sources than broken NAND (which is first if user
button is not pressed).

Then, there are three options to boot from:
• MMC
• USB
• UART

MMC and USB recovery is described below. Goal of all ways is to get an U-Boot
prompt again to erase the bad NAND content.

MMC recovery

MMC recovery should be straight forward. Press user button at power up and
according to above boot order MMC boot is before NAND. With this, we should
be able to boot as we did without pressing the user button before bricking the

board. But there are some broken MLO (x-loader) out there which fail to boot if
something wrong is in NAND. E.g.:

...40T.........

Texas Instruments X-Loader 1.41
Starting on with MMC
Reading boot sector

150832 Bytes Read from MMC
Starting OS Bootloader from MMC...

U-Boot 1.3.3 (Jun 20 2008 - 17:06:22)

OMAP3530-GP rev 2, CPU-OPP2 L3-165MHz
OMAP3 Beagle Board + LPDDR/NAND
RAM Configuration:
Bank #0: 80000000 128 MB
Bank #1: 88000000 0 kB
NAND: NAND device: Manufacturer ID: 0x2c, Chip ID: 0x01 (AND
128MiB 3,3V 8-bit)
NAND bus width 16 instead 8 bit
0 MiB
<hang, no prompt>

This seems to happen with both MLO's from Beagle source code page (381MHz
and 500MHz one) independent of U-Boot version.

Thus, you have to use a special (?) MLO for recovery to get a U-Boot prompt.
Replacing MLO used above on MMC/SD card with this recovery MLO we get a
U-Boot prompt while pressing the user button at power up:

...40T.........

Texas Instruments X-Loader 1.41
Starting on with MMC
Reading boot sector

150832 Bytes Read from MMC
Starting OS Bootloader from MMC...

U-Boot 1.3.3 (Jun 20 2008 - 17:06:22)

OMAP3530-GP rev 2, CPU-OPP2 L3-165MHz
OMAP3 Beagle Board + LPDDR/NAND
RAM Configuration:
Bank #0: 80000000 128 MB

http://code.google.com/p/beagleboard/wiki/BeagleSourceCode

Bank #1: 88000000 0 kB
NAND: 256 MiB
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0
OMAP3 beagleboard.org #

U-Boot version doesn't seem to matter. Then you can erase NAND start (e.g.
using U-Boot 1.3.3 commands):

OMAP3 beagleboard.org # nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
OMAP3 beagleboard.org # nand erase 0 80000

NAND erase: device 0 offset 0x0, size 0x80000
Erasing at 0x60000 -- 100% complete.
OK
OMAP3 beagleboard.org #

If you now re-power your board without pressing the user board it should work as
before.

USB recovery

You can use USB boot utility together with U-Boot V2 and then use U-Boot V2's
loadb to load U-Boot (V1). Binary: U-boot V2

Note: USB download can only load programs into OMAP3's internal SRAM. This
is 64k, so too small for U-Boot (V1). But unfortunately, U-Boot V2 currently lacks
NAND support. So we have to use:

USB download -> U-Boot V2 (SRAM) loadb -> U-Boot (V1) (SDRAM) NAND
erase

For this, get usbload and U-Boot V2 using above links, start usbload tool at PC
and while ... plug in USB OTG (power) cable. At host, this will result in:

> ./omap3_usbload uboot_v2.bin

TI OMAP3 USB boot ROM tool, version 0.1
(c) 2008 Martin Mueller <martinmm@pfump.org>

..

http://git.denx.de/?p=u-boot/u-boot-v2.git;a=summary
http://groups.google.com/group/beagleboard/browse_thread/thread/be194f345b55a887

found device!
download ok
>

And at target you will get:

U-Boot 2.0.0-rc5-git (Jun 30 2008 - 20:16:02)

Board: Texas Instrument's SDP343x
Malloc Space: 0x87bfff10 -> 0x87ffff10 (size 4 MB)
running /env/bin/init...
not found
X-load 343x>

Now, you can use this running U-Boot V2 to download U-Boot (V1) using loadb
command:

X-load 343x> devinfo
devices:
|----uart3
|----ram0
|----filesystem: /
|----filesystem: /dev

drivers:
serial_ns16550
 ramfs
 devfs
 ram
X-load 343x> help loadb
[OPTIONS]
 -d device - which device to download - defaults to /dev/mem
 -o offset - what offset to download - defaults to 0
 -b baud - baudrate at which to download - defaults to console
baudrate

X-load 343x> loadb -d /dev/ram0
Ready for binary (kermit) download to 0x00000000 offset on
/dev/ram0 device at 115200 bps...

Now, send U-Boot (V1) binary (i.e. u-boot.bin) using kermit download of you
terminal program. When this is finished:

Total Size = 0x00023d64 = 146788 Bytes

X-load 343x> help go
addr [arg ...]

 - start application at address 'addr'
 passing 'arg' as arguments

X-load 343x> go 0x80000000
Starting application at 0x80000000 ...

U-Boot 1.3.3 (Jul 6 2008 - 10:33:59)

OMAP3530-GP rev 2, CPU-OPP2 L3-165MHz
OMAP3 Beagle Board + LPDDR/NAND
RAM Configuration:
Bank #0: 80000000 128 MB
Bank #1: 88000000 0 kB
NAND: 256 MiB
In: serial
Out: serial
Err: serial
OMAP3 beagleboard.org #

Now, you have your U-Boot (V1) prompt. This can be used now to erase (broken)
parts in NAND:

OMAP3 beagleboard.org # nand unlock
device 0 whole chip
nand_unlock: start: 00000000, length: 268435456!
NAND flash successfully unlocked
OMAP3 beagleboard.org # nand erase 0 80000

NAND erase: device 0 offset 0x0, size 0x80000
Erasing at 0x60000 -- 100% complete.
OK
OMAP3 beagleboard.org #

If you now re-power your board without pressing the user board it should work as
before.

	3. SOFTWARE COMPILATION OPTIONS AND PROCEDURES
	3.1 Compiling x-loader
	3.2 Compiling u-boot
	3.3 Compiling Kernel
	3.4 Compiling MTDUtils
	zlib
	lzo
	mtd-utils

	3.4 Source & Pre-built images
	Tools for OMAP3
	MMC/SD formatting
	U-Boot booting

